RESOURCE: Old Content and Modern Tools: Searching Named Entities in a Finnish OCRed Historical Newspaper Collection, 1771‚Äď1910

The new preview issue of¬†Digital Humanities Quarterly¬†features¬†an article from¬†Kimmo Kettunen¬†(National Library of Finland), Eetu M√§kel√§¬†(Aalto University), Teemu Ruokolainen¬†(National Library of Finland), Juha Kuokkala¬†(University of Helsinki), and¬†Laura L√∂fberg¬†(Lancaster University), “Old Content and Modern Tools: Searching Named Entities in a Finnish OCRed Historical Newspaper Collection, 1771‚Äď1910.”

From the abstract:

Named Entity Recognition (NER), search, classification and tagging of names and name-like informational elements in texts, has become a standard information extraction procedure for textual data. NER has been applied to many types of texts and different types of entities: newspapers, fiction, historical records, persons, locations, chemical compounds, protein families, animals etc. In general a NER system’s performance is genre- and domain-dependent and also used entity categories vary [Nadeau and Sekine 2007]. The most general set of named entities is usually some version of a tripartite categorization of locations, persons, and organizations. In this paper we report trials and evaluation of NER with data from a digitized Finnish historical newspaper collection (Digi). Experiments, results, and discussion of this research serve development of the web collection of historical Finnish newspapers.

Digi¬†collection contains 1,960,921 pages of newspaper material from 1771‚Äď1910 in both Finnish and Swedish. We use only material of Finnish documents in our evaluation. The OCRed newspaper collection has lots of OCR errors; its estimated word level correctness is about 70‚Äď75 % [Kettunen and P√§√§kk√∂nen 2016]. Our principal NE tagger is a rule-based tagger of Finnish,¬†FiNER, provided by the¬†FIN-CLARIN¬†consortium. We also show results of limited category semantic tagging with tools of the¬†Semantic Computing Research Group (SeCo)¬†of the Aalto University. Three other tools are also evaluated briefly.

This research reports the first large scale results of NER in a historical Finnish OCRed newspaper collection. Results of this research supplement NER results of other languages with similar noisy data. As the results are also achieved with a small and morphologically rich language, they illuminate the relatively well-researched area of Named Entity Recognition from a new perspective.

Utilizing 1,960,921 million pages in Finnish and Swedish from the National Library of Finland, this research evaluates the performance of Named Entity Recognition (NER) tools in Digital Humanities research, and provides methods for estimating the effects of noisy OCR.

dh+lib Review

This post was produced through a cooperation between Emily Esten, Rajene Hardeman‚Äč, Melanie Hubbard, Andy Janco, Heather Martin, and Jessica Meyerson ‚Äč(Editors-at-large for the week), Nickoal Eichmann-Kalwara (Editor for the week), and Caitlin Christian-Lamb, Sarah Melton, Roxanne Shirazi, and Patrick Williams (dh+lib Review Editors).